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A very fast method to account for charged particle dynamics effects in calculations of spectral line shape
emitted by plasmas is presented. This method is based on a formulation of the frequency fluctuation model
�FFM�, which provides an expression of the dynamic line shape as a functional of the static distribution of
frequencies. Thus, the main numerical work rests on the calculation of the quasistatic Stark profile. This
method for taking into account ion dynamics allows a very fast and accurate calculation of Stark broadening of
atomic hydrogen high-n series emission lines. It is not limited to hydrogen spectra. Results on helium-� and
Lyman-� lines emitted by argon in microballoon implosion experiment conditions compared with experimental
data and simulation results are also presented. The present approach reduces the computer time by more than
2 orders of magnitude as compared with the original FFM with an improvement of the calculation precision,
and it opens broad possibilities for its application in spectral line-shape codes.
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I. INTRODUCTION

The emitted radiation is usually one of the few observable
physical quantities available to obtain information on the un-
derlying physical processes involved in line formation in
plasmas. Modeling broadening due to Stark effect of transi-
tions from neutral or charged emitters is a complicated prob-
lem that involves a complex combination of atomic physics
data, statistical mechanics, and detailed plasma physics �1�.
The most difficult part of a line-broadening problem is to
properly and completely identify the environment of the
emitter. In particular, accounting for the fluctuations of elec-
tric fields produced at emitters, by moving electrons and
ions, has been of constant interest for both the experimental
and theoretical points of view since the 1960s �2�. Different
methods have been developed among which the model mi-
crofield method �MMM� �3,4� and numerical simulations
�5–9� and kinetic theory models such as those developed by
Boerker, Iglesias, and Dufty �BID� �10� and
frequency fluctuation model �FFM� �11� have proven to be
the most successful. Recently, with the advances in computer
technology, two-component ion plus electron plasma mo-
lecular dynamics �MD� simulations have been applied in
studies devoted to spectral line shapes �12–14�. The simula-
tions numerically solve the Schrödinger equation describing
the time evolution of the emitter wave functions in the time-
dependent field of electrons and ions produced by MD and
then average over configurations to obtain the final result.
Simulations are used as model laboratory experiments to
compare with line shapes calculated by other methods or
resulting from experiments. Unfortunately, this technique is

time consuming and thus impractical for the modeling of
today’s highly complex plasma experiments. The FFM has
been developed to overcome this difficulty and to permit fast
calculations of the radiation emitted by complex or highly
charged ions in plasmas. It relies on the hypothesis that the
emitter-plasma system behaves approximately like a pseudo-
molecule embedded into a thermal bath. As a result, the
pseudosystem can be considered to have internal states con-
nected to each other by collisions with the bath. This simple
starting point has been turned into a powerful renormaliza-
tion process, called FFM, resulting, a few years ago, in a fast
line-shape code called PPP �15� and a code for the computa-
tion of radiative redistribution function �16�. The validity of
the FFM has been abundantly tested by comparisons with
both simulations and, where available, high-precision line-
shape measurements �17�. The modern state of the art in
radiating plasma physics investigations deals with a complex
combination of different theoretical models such as detailed
atomic level population kinetics together with radiation
transport phenomena in nonuniform plasmas. In this context,
the FFM in its original formulation, despite its rapidity, re-
mains too slow and, above all, too difficult to be imple-
mented in the codes used in plasma spectroscopy. The goal
of the present paper is to present a more efficient formulation
of the FFM to account for dynamic effects of electric fields
on atomic spectra in plasmas.

II. METHOD

The line-shape function in the radiative dipole approxima-
tion is related to the imaginary part of the Fourier-
transformed dipole autocorrelation function. This can be
written as a normalized Liouville space-matrix element of
the response function,

I��� = Im��d+�G����d�0�� , �1�

where �0 is the equilibrium density-matrix operator for the
active quantum system and d is the dipole operator for the
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emitting quantum system. The response function, G�z�, is
given by the one-sided Fourier transform of the bath-
averaged evolution operator of the emitter U�t ,0�,

G�z� = i�
0

+�

U�t,0�e−iztdt = �z − L�−1. �2�

Here, L is the Liouville operator for the emitter evolution
alone. If the interaction fluctuations or collisions are random,
a stochastic Liouville equation �SLE� must be solved to ob-
tain G�z�. In a few well-known cases, the SLE can be solved
either exactly or to a good approximation. For example, an
analytical solution is obtained for the impact limit in which
short and rare binary collisional events occur between emit-
ters and perturbers and the mean time between collisions is
much longer than the collision time. The second example
concerns the static limit where the perturbing ion mi-
crofields, acting on emitters, are constant during the radiative
process and are well characterized by a probability density.
In most of theoretical models of spectral line shapes in plas-
mas, the time dependence of the perturbation is eliminated,
resulting in a spectral line shape that has pure homogeneous
and inhomogeneous contributions and is described by a
simple sum of independent electron-impact broadened static
components. Although the electron collisions are often well
described by the impact approximation, it is well known that
a quasistatic treatment of the ion perturbation can lead to
large errors for plasma conditions that yield substantial ion-
field fluctuations. As an alternative solution, the FFM is
based on the premise that a quantum system perturbed by an
electric microfield behaves like a set of field dressed two-
level transitions, the Stark dressed transitions �SDT�. If the
microfield is time varying, the transitions are subject to a
collision-type mixing process �a Markov process� induced by
the field fluctuations.

Suppose the system variables take the values x1 ,x2 , ¯ ,xn
at times t1 , t2 , ¯ , tn with probability function
�n�xn , tn ; ¯x1 , t1�. The changes in x�t� are a Markov process
when

�n�xn,tn; ¯ x1,t1� = P�xntn�xn−1tn−1� ¯ P�x2t2�x1t1� , �3�

where P�x2t2 �x1t1� is the conditional probability that x�t� will
have the value x2 at t2 when x�t1�=x1. The conditional or
transition-probability function satisfies the Chapman-
Kolmogorov equation

P�x2t2�x1t1� = 	
x�

P�x2t2�x�t��P�x�t��x1t1� , �4�

as well as

	
x2

P�x2t2�x1t1� = 1 �5�

and

	
x1

P�x2t2�x1t1�	1�x1,t1� = 	1�x2,t2� , �6�

where 	1�x , t� is the single-state probability distribution. At
this point, it is convenient to introduce a matrix notation. If
only stationary Markov processes are considered, Eq. �4�

shows that it is possible to define a time-independent matrix
of transition rates W� such as

P� �t� = eW� t. �7�

Dividing W� into a diagonal matrix of inverse state lifetimes

� and an off-diagonal matrix W� of transition rates between
different states,

Wx2,x1
= − 
x1

�x2,x1
+ Wx2,x1

, �8�

the matrix elements of P� �t� satisfy

�t2
P�x2t2�x10� = − 
x2

P�x2t2�x10� + 	
x�

Wx2,x�P�x�t2�x10� .

�9�

Since P�x2t2 �x10� satisfies Eq. �5�, we have


x1
= 	

x2

Wx2,x1
. �10�

Multiplying Eq. �9� by 	1�x1 ,0�, summing over x1, and
using Eq. �6� yield a master equation which relates the
single-state probability distribution to Wx2,x1

,

�t	1�x2,t� = − 
x2
	1�x2,t� + 	

x�

Wx2,x�	1�x�,t� . �11�

The steady-state solution, P1�x�, of this equation is then de-
termined by


xP1�x� = 	
x�

Wx,x�P1�x�� . �12�

Using matrix notation, we can write the one-sided Fourier
transform of P� �t� as

P� �z� = − i�z + iW� − i
� �−1 �13�

so that the propagator is �18�

G� �z� = �z + iW� − i
� − L� �−1. �14�

Assuming that the rate of transitions from state x1 to state
x2 is independent of x1, we obtain

Wx2,x1
= 
P1�x2� , �15�

where 
 is a constant fluctuation rate. This transition rate
matrix is referred to as the strong collision limit for velocity
states in Doppler-broadening description �19� or Poisson step
process in the model microfield method �3�, it suggests that
the cause of the change in states is so violent that in its final
states, the system has no memory of its initial state. Working
in the Liouville space of the dressed two-level radiators in
which the basis set of eigenvectors, 
��e ,g ; j���, is labeled by
the quantum numbers of the emitters �e ,g� and by the SDT
label j, the line shape is written as �16�

I��� = Re
1

�
	
kj

i�Dk��� − L� − i
� + iW� �−1�Dj�pj , �16�

where L� is the Liouville operator involving the transition
energies of the SDT, Di are the matrix elements of the dipole
moment for the SDT and pi=ai /r2 �ai being the intensity of
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the SDT, i, and r2=	kak� is the instantaneous probability of
state i; the probability of quantum radiation at the
specific frequency shift due to Stark splitting of energy lev-
els. 
� is the diagonal matrix of inverse state lifetimes with

kj =
�kj = �vth /d��kj �where vth is the thermal velocity of
perturbers and d is the mean interparticle distance� and W� is
the matrix of transition rates between different states such as
Wkj =
pk.

Equation �16� involves a finite matrix inversion whose
size can be very large. In the original FFM �11�, a renormal-
ization process was proposed to overcome this difficulty.
This process introduced an additional approximation and
proved insufficient in some very complex cases. Hereafter, a
formulation is presented which avoids matrix inversion, thus
considerably improving the method. Defining the quasistatic
propagator

Gs�z� = �z − L� − i
� �−1, �17�

which has only diagonal matrix elements, the total propaga-
tor G� �z�, from Eq. �14�, can be written as

G� �z� = Gs�z� − iGs�z� · W� · G� �z� . �18�

Introducing the previous expression in Eq. �16�, we get

I��� =
r2

�
Re

	
k

ak/r2

i�� − �k� + 


1 − 
	
k

ak/r2

i�� − �k� + 


. �19�

All the above results are easily extended to the situation
where x�t� belongs to a continuum of values. In this case, the
probabilities P�x2t2 �x1t1� and 	�x , t�, defined for discrete
x�t�, become probability densities p�x2t2 �x1t1� and ��x , t�,
and all sums are replaced by integrals. In this case, the prob-
ability pk=ak /r2 is replaced by W���d� the probability to
have a radiation at a frequency in the range � and �+d�
obtained in the static limit. The previous equation is then
written as

I��� =
r2

�
Re

� W����d��


 + i�� − ���

1 − 
� W����d��


 + i�� − ���

. �20�

With W��� being the normalized static line shape, the main
numerical work remains in the calculation of the quasistatic
profile.

Note that this expression is similar to that obtained in �19�
to describe the Doppler effect in the framework of a strong
collision model �Dicke effect �20��,

I��� =
1

�
Re

� W�v��dv�

 + i�� − k� . v��

1 − � W�v��dv�

 + i�� − k� . v��

. �21�

There, the thermal bath is composed of radiator velocity
states v� with the probability distribution W�v��. The velocity-

changing collisions result in an effective jumping from one
value of the atomic velocity to one other following a Markov
process. The line shape is, then, transformed from nonuni-
form Gaussian to uniform Lorentzian line shape with the
effective line width equal to

�D �
��D

2


�22�

where ��D is the Doppler width of the line and  is the
velocity-changing collision frequency. We will come back on
this analogy in the following section.

As it has been noticed previously, electrons in plasmas are
well described by the impact approximation. The quantum-
emitter system evolution operator in Eq. �2�, then, contains
in the Liouville operator a non-Hermitian homogeneous
electron-impact broadening contribution, resulting in static
Stark components �SDT� characterized by a complex fre-
quency �k− i�k and intensity ak+ ick. The line-shape function
for a given transition with n SDT is, then, written as

I��� =
r2

�
Re

	
k

�ak + ick�/r2

i�� − �k� + �k + 


1 − 
	
k

ak/r2

i�� − �k� + �k + 


. �23�

If the condition ck�ak is fulfilled and �k is weakly k depen-
dent, �k=�. Then, Eq. �23� can be written as

I��� =
r2

�
Re

� W����d��


 + � + i�� − ���

1 − 
� W����d��


 + � + i�� − ���

. �24�

As � does not depend on the frequency of the emitting atom,
Eq. �24� can be represented as the convolution of a lorentzian
function and function �20� which defines the line contour
when �=0,

I��� =� d��
�/�

�2 + �� − ���2Re� r2

�

� W����d��


 + i��� − ���

1 − 
� W����d��


 + i��� − ���
 .

�25�

III. RESULTS AND DISCUSSION

The hydrogenic argon Lyman-� transition, including fine
structure, in a weakly coupled proton plasma, is considered
first in this section to illustrate the effects of ion dynamics on
spectral line shapes and the analogy with Dicke narrowing
effect. The quantum system involves the four levels 1S1/2,
2S1/2, 2P1/2, and 2P3/2. This case is very advantageous be-
cause the spectrum involves two patterns resulting from both
linear and quadratic Stark splitting associated, respectively,
with the two fine-structure components 1S1/2-2P1/2 and
1S1/2-2P3/2.
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Figure 1 shows the Lyman-� profile for hydrogenlike ar-
gon in protons without Doppler broadening calculated for the
plasma conditions Ne=1.5�1023 cm−3 and Te=107 K.
Three different results have been plotted in logarithm scale:
the static profile �dash line�, the dynamic profile obtained
with the new formulation of the FFM �full line� and the
simulation result �circles�. In these simulations, a representa-
tive set of ionic electric-field histories is generated by using
molecular dynamics technique, then, the time-depending his-
tories are used in a step-by-step integration of the
Schrödinger equation and the final result is obtained averag-
ing over the set of histories. Results from simulations are
considered as benchmark, as they rely neither on impact nor
static approximation. Comparisons with numerical simula-
tions show a very good agreement. The two fine-structure
components show different behaviors. Due to linear Stark
effect on the 1S1/2-2P1/2, two resonances appear in the static
approximation which are mixed and merged into a single one
by ion dynamics. On the 1S1/2-2P3/2 the main feature due to
quadratic static Stark effect seems to be enhanced by ion
dynamics and the dynamic profile appears broaden and
shifted. In all the cases, it can be noticed that, as expected,
the wings are well represented by the static profile. The FFM
method describes continuously the region between the static
limit which corresponds to a zero fluctuation rate and the fast
fluctuation limit. In the limit of an infinitely rapid ion micro
field fluctuation, the effect of the perturbation disappears and
the line components collapse to the center of gravity. This is
illustrated in Fig. 2 where the Lyman-� profile is plotted for
different values of the fluctuation rate and compared with the
unperturbed line corresponding to a zero ionic electric field.
As we can see, even though in a first stage the profile is
broadened, an increase in the fluctuation rate results in a
narrowing of the profile. This effect is the same as Dicke
narrowing where the rapid collisionnal mixing of velocity
components causes a collapse of the Doppler line shape.

The second example concerns Stark broadening of atomic
hydrogen high-n series emission lines which have been used

for spectroscopic measurements of plasma density in labora-
tory experiments �21�. In Ref. �21�, a multichannel spectro-
scopic diagnostic and the corresponding analysis for divertor
electron-density measurements using Stark-broadened
Balmer and Paschen emission lines originating from
n=7–13 levels have been developed. It has been shown that
the Paschen line profiles are an attractive recombining di-
vertor density diagnostic for a burning plasma experiment.
Diagnostics are based on comparisons between experimental
data and theoretical results that must be as accurate as pos-
sible.

Figure 3 shows the static and dynamic profiles for the
Balmer 10–2 and the Paschen 10–3 transitions for an elec-
tronic density Ne=1014 cm−3 and a temperature Te=10 eV
corresponding to observations performed in the National
Spherical Torus Experiment detached divertor region. These

FIG. 1. Lyman-� line with fine structure at
Ne=1.5�1023 cm−3 and Te=107 K. Comparisons between static
profile �dash line�, dynamic profile �full line� and molecular dynam-
ics simulation calculation �circles�.

FIG. 2. Lyman-� line with fine structure at
Ne=1.5�1023 cm−3 and Te=107 K. Dynamic profile with different
fluctuation rates, 
 �full line: same as Fig. 1 with 
=1.5, stars: 

=10, and triangles: 
=100� compared to unperturbed profile ob-
tained with a zero ionic electric field �dash line�.

FIG. 3. Balmer 10–2 and Paschen 10–3 lines at
Ne=1014 cm−3 and Te=10 eV. Comparisons between static profile
�dash line� and dynamic profile �full line�.
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calculations, which were impracticable or very difficult to
perform without approximation, have been done in a few
seconds. In addition, as no matrix inversion is required, the
results are more accurate.

The method presented here is not limited to hydrogen
spectra. It is particularly useful when a Stark-broadened im-
purity profile is used for plasma diagnostic purposes. This
line-shape computation in hot dense plasma conditions can
be difficult and very time consuming. This is because the
spectra of interest are not limited to the simplest hydrogen-
like or heliumlike ionic lines but include also lines radiated
by complex three or more electron ions �dielectronic satel-
lites for example�.

The third example concerns the Helium-� line of argon,
Ar XVII 1s2-1s3p 1P, and the associated lithiumlike dielec-
tronic satellite lines, in deuterium for plasma conditions typi-
cal of inertial confinement fusion experiments �22�. In these
experiments, rare-gas atoms are introduced in trace amounts
as a nonperturbing dopant in the gas fill of the microspheres
of the implosion experiments. The profiles of the lines emit-
ted by the rare-gas ions are then used as a diagnostic by
comparing the experimental results with theoretical predic-
tions. Figure 4 displays a comparison of the full ion dynam-
ics calculation of the helium-� line including the Li-like
2l3l� and 3l3l� dielectronic satellite lines for Argon impuri-
ties in deuterium at Ne=1.2�1024 cm−3 and Te=700 eV
with the experimental data �22� and the static profile. It has
been shown in Ref. �22� that ion dynamics effects cannot be
considered as the unique cause of the filling of the line cen-
tral feature. Even though, ion dynamics effects improve the
comparison with experimental data, some discrepancies re-
main and their study is not the subject of this paper �for more

details see Ref. �22��. Calculations of ion dynamics effects
on Li-like satellite lines involve hundred thousands of Stark
components, and the calculation with the original FFM was
extremely difficult or impracticable. The present FFM for-
mulation permits to get the ion profile in a couple of minutes
on a workstation.

IV. CONCLUSION

A very fast method to account for charged particle dynam-
ics effects in calculations of spectral line shapes has been
presented and tested by comparisons with numerical simula-
tions. Comparisons with experimental data illustrate the need
to calculate ion dynamics effects for line shapes emitted by
complex atomic systems.

The method is based on a formulation of the FFM, which
provides an expression of the dynamic line profile as a func-
tional of the static frequency distribution and a unique pa-
rameter, the fluctuation rate. This expression is similar to that
obtained to describe the Doppler effect in the framework of
strong collision models �Dicke effect�. In this model, a Mar-
kovian mixing process of velocities mimics the velocity-
changing collision effect, on the Doppler profile, which re-
sult in the line-shape transformation from nonuniform
Gaussian to uniform Lorentzian line shape when the colli-
sion rate increases. The same description of transition from
inhomogeneous �static� to homogeneous �Lorentzian or fast
fluctuation limit� can be done for Stark profiles. The main
numerical work is the calculation of the static profile. It can
be obtained by different analytical or numerical methods.
Different models �23,24� have been proposed in order to fa-
cilitate the calculations of line shapes of highly excited �Ry-
dberg� hydrogen atoms and ions important for many topics in
plasma physics and astrophysics. Some very sophisticated
code have been developed, PPP-TOTAL code �15� or MERL

multielectron-radiator line shape code �25�, for example, to
calculate spectral line shape emitted by complex multielec-
tronic emitters.

This work opens possibilities for ultra fast calculations of
dynamic line shapes for arbitrary values of plasma param-
eters �densities and temperatures�. It is of special importance
for strongly nonuniform plasmas where one needs to calcu-
late spectra for a wide domain of plasma parameters. It is the
case both for laser driven plasmas and magnetically confined
�especially divertor� plasma conditions. Another application
concerns Stark-Zeeman profiles for which, ion dynamics cal-
culations are, strongly, facilitated by using this new formu-
lation. These profiles are of great interest for astrophysics
and thermonuclear fusion physics.
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FIG. 4. Ar XVII 1s2-1s3p 1P at Ne=1.2�1024 cm−3 and
Te=700 eV. Comparison of the full ion dynamics calculation in-
cluding the Li-like satellites �bold full line� with the experimental
data �circles� and the static profile �thin full line�.
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